Constitutive overexpression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus.

نویسندگان

  • D Y Vasconcelos
  • X H Cai
  • M J Oglesbee
چکیده

Induction of the cellular stress response elevates cytoplasmic levels of heat shock proteins (HSPs) belonging to multiple families. When infected with canine distemper virus or measles virus (MV), cells containing elevated HSPs support increased viral gene expression and cytopathic effect. The present work tests the hypothesis that increases in the major inducible 70 kDa HSP (hsp72) are sufficient to mediate the effect of stress response induction on infection phenotype. Human astrocytoma cells (U373) were stably transfected with the human hsp72 gene under control of the beta-actin promoter. Constitutive overexpression of hsp72 was demonstrated in multiple clones by Western blot analysis of cytoplasmic total protein. Southern blot analysis of cell DNA confirmed the recovery of genetically distinct clones. Infection of these clonal populations with MV resulted in increased viral transcript production relative to infected control cell lines. Increased transcript production was associated with increased viral membrane glycoprotein expression and cytopathic effect (i.e., mean plaque area). Increases in cytopathic effect were due to the emergence of a large plaque phenotype from a small plaque-purified inoculum, mimicking the effect of cellular stress response induction upon viral infection phenotype. Large plaque phenotypic variants reported in the literature are associated with enhanced neurovirulence, a fact that highlights the potential significance of physiologic elevations in hsp72 (e.g., fever-induced) that accompany in vivo viral infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat-shock proteins in axoplasm: high constitutive levels and transfer of inducible isoforms from glia.

To characterize heat-shock proteins (HSPs) of the 70-kDa family in the crayfish medial giant axon (MGA), we analyzed axoplasmic proteins separately from proteins of the glial sheath. Several different molecular weight isoforms of constitutive HSP 70s that were detected on immunoblots were approximately 1-3% of the total protein in the axoplasm of MGAs. To investigate inducible HSPs, MGAs were h...

متن کامل

hsp72, a host determinant of measles virus neurovirulence.

Transient hyperthermia such as that experienced during febrile episodes increases expression of the major inducible 70-kDa heat shock protein (hsp72). Despite the relevance of febrile episodes to viral pathogenesis and the multiple in vitro roles of heat shock proteins in viral replication and gene expression, the in vivo significance of virus-heat shock protein interactions is unknown. The pre...

متن کامل

Virus-Heat Shock Protein Interaction and a Novel Axis for Innate Antiviral Immunity

Virus infections induce heat shock proteins that in turn enhance virus gene expression, a phenomenon that is particularly well characterized for the major inducible 70 kDa heat shock protein (hsp70). However, hsp70 is also readily induced by fever, a phylogenetically conserved response to microbial infections, and when released from cells, hsp70 can stimulate innate immune responses through tol...

متن کامل

Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein.

The paramyxovirus template for transcription and genome replication consists of the RNA genome encapsidated by the nucleocapsid protein (N protein). The activity of the complex, consisting of viral polymerase plus template, can be measured with minireplicons in which the genomic coding sequence is replaced by chloramphenical acetyltransferase (CAT) antisense RNA. Using this approach, we showed ...

متن کامل

hsp70-dependent antiviral immunity against cytopathic neuronal infection by vesicular stomatitis virus.

The major inducible 70-kDa heat shock protein (hsp70) protects against measles virus (MeV) neurovirulence in the mouse that is caused by a cell-associated noncytolytic neuronal infection. Protection is type I interferon (IFN) dependent, and we have established a novel axis of antiviral immunity in which hsp70 is released from virus-infected neurons to induce IFN-β in macrophages. The present wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general virology

دوره 79 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1998